Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230267

RESUMO

The large population of emaciated horses continues to be an issue troubling the equine industry. However, little is known regarding the collection of equine metabolites (metabolome) during a malnourished state and the changes that occur throughout nutritional rehabilitation. In this study, ten emaciated horses underwent a refeeding process, during which blood samples were collected for a blood chemistry panel and metabolomics analysis via ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Significant differences among blood chemistry analytes and metabolite abundance during the critical care period (CCP; Days 1-10 of rehabilitation) and the recovery period (RP; the remainder of the rehabilitation process) were observed. Potentially toxic compounds, analytes related to liver, kidney, and muscle function, as well as energy-related metabolites were altered during the refeeding process. The combination of blood chemistry and metabolomics analyses on starved equine during rehabilitation provide vital biological insight and evidence that the refeeding process has a significant impact on the equine metabolome.

2.
Environ Sci Technol ; 56(12): 8155-8166, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35642897

RESUMO

Anthropogenic organofluorine compounds are recalcitrant, globally distributed, and a human health concern. Although rare, natural processes synthesize fluorinated compounds, and some bacteria have evolved mechanisms to metabolize organofluorine compounds. Pseudomonas sp. strain 273 grows with 1-fluorodecane (FD) and 1,10-difluorodecane (DFD) as carbon sources, but inorganic fluoride release was not stoichiometric. Metabolome studies revealed that this bacterium produces fluorinated anabolites and phospholipids. Mass spectrometric fatty acid profiling detected fluorinated long-chain (i.e., C12-C19) fatty acids in strain 273 cells grown with FD or DFD, and lipidomic profiling determined that 7.5 ± 0.2 and 82.0 ± 1.0% of the total phospholipids in strain 273 grown with FD or DFD, respectively, were fluorinated. The detection of the fluorinated metabolites and macromolecules represents a heretofore unrecognized sink for organofluorine, an observation with consequences for the environmental fate and transport of fluorinated aliphatic compounds.


Assuntos
Alcanos , Bicamadas Lipídicas , Alcanos/química , Alcanos/metabolismo , Bactérias/metabolismo , Ácidos Graxos/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Pseudomonas/metabolismo
3.
Environ Sci Technol ; 54(23): 14994-15003, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190477

RESUMO

Fluorinated organic compounds have emerged as environmental constituents of concern. We demonstrate that the alkane degrader Pseudomonas sp. strain 273 utilizes terminally monofluorinated C7-C10 alkanes and 1,10-difluorodecane (DFD) as the sole carbon and energy sources in the presence of oxygen. Strain 273 degraded 1-fluorodecane (FD) (5.97 ± 0.22 mM, nominal) and DFD (5.62 ± 0.13 mM, nominal) within 7 days of incubation, and 92.7 ± 3.8 and 90.1 ± 1.9% of the theoretical maximum amounts of fluorine were recovered as inorganic fluoride, respectively. With n-decane, strain 273 attained (3.24 ± 0.14) × 107 cells per µmol of carbon consumed, while lower biomass yields of (2.48 ± 0.15) × 107 and (1.62 ± 0.23) × 107 cells were measured with FD or DFD as electron donors, respectively. The organism coupled decanol and decanoate oxidation to denitrification, but the utilization of (fluoro)alkanes was strictly oxygen-dependent, presumably because the initial attack on the terminal carbon requires oxygen. Fluorohexanoate was detected as an intermediate in cultures grown with FD or DFD, suggesting that the initial attack on the fluoroalkanes can occur on the terminal methyl or fluoromethyl groups. The findings indicate that specialized bacteria such as Pseudomonas sp. strain 273 can break carbon-fluorine bonds most likely with oxygenolytic enzyme systems and that terminally monofluorinated alkanes are susceptible to microbial degradation. The findings have implications for the fate of components associated with aqueous film-forming foam (AFFF) mixtures.


Assuntos
Alcanos , Pseudomonas , Biodegradação Ambiental , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...